Last week, in collaboration with astrophysicists from USA and China, our group’s paper was accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS). The paper is about the properties of the spectral energy density (SED) of the nearby galaxy NGC 3115, that hosts a billion solar mass black hole in a low-luminosity active galactic nucleus (LLAGN). Behind the spectrum of this galaxy there is a lot of information about the state of the gas flow around the supermassive black hole.
This work is a compilation of observational data of NGC 3115 nucleus followed by modeling of the spectrum considering the electromagnetic processes for the case of a radiatively inefficient accretion flow (RIAF), as the observation suggests. The main part of the work is the analysis of the radio emission that can be well-explained only considering the synchrotron emission from the RIAF, without the need of relativistic jet arising from the LLAGN,
The main result of the paper is a tight constraint on the density profile (ρ) of the accretion flow ρ(r) ∝ r -0.73 +0.01-0.02 which implies an important mass-loss via subrelativistic outflows (i.e. winds) in the RIAF. Our modeling suggests a nonthermal population of electrons in the flow too, similarly to SgrA*—the supermassive black hole in the center of our Galaxy—models.
